GHG Emissions Assessment & Accounting Frameworks for Bioenergy Systems

Supergen Annual Assembly
Hillsborough, NI 25th October 2017

Andrew Welfle, The University of Manchester
Mirjam Röder, The University of Manchester
Why are Bioenergy Emissions Important?
Why is the GHG footprint of bioenergy important?

- Energy & emission targets / mandates.
- Bioenergy is firmly on the UK’s roadmap.
- Bioenergy only viable if it provides a low carbon renewable energy pathways.
- Important to maintain focus on GHG performance.

<table>
<thead>
<tr>
<th>UK Total Power Generation</th>
<th>UK Total Heat Generation</th>
<th>UK Total (non-air) Transport Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7% from bioenergy</td>
<td>5.3% from bioenergy</td>
<td>4.2% from bioenergy</td>
</tr>
</tbody>
</table>

DUKES, 2015
And the Importance of GHG Performance is Growing...

- Growing network of international biomass supply chains.
- Europe consumes 79% of global supply of wood pellets (FAO, 2015).
- The UK the worlds largest consumer 6.8 Mt (FAO, 2015).

| Increased Scale & Complexity of Supply Chains | = | Increased Scrutiny of the GHG Performance |
Our Research Shines a Light on the GHG Performance of Bioenergy
We can show... Bioenergy, is Low Carbon Renewable Energy
Although...

There are Lingering GHG Uncertainties

UK Generation Heat from Willow SRC – Revised Counterfactual
Don't Forget:
Geography, Sector and Temporal Framing
We Know...
The Drivers of Bioenergy GHG Variations

- Land and Land Use Change
- Biomass Production Practices
- Bioenergy Feedstocks
- Bioenergy Processes
- Analysis System Boundaries
- Analysis Methodologies
- Temporal/ Spatial Variations
- Counterfactuals

Increasing Uncertainty!
The Importance of Viewing & Analysing Bioenergy as a Whole System
LCA, the Primary Analysis Technique

- Well developed & widely implemented technique for analysing the whole life cycle bioenergy emissions.
- Balance of emissions from all life cycle processes & activities, provide overall GHG performance.
- Explore the influence of counterfactual scenarios.
- Can be applied to analyse the GHG performance of complex supply chains.
- Allows evaluation of the GHG performance of each specific life cycle step – identifying ‘good’ and ‘bad’ processes.
Case Study: Analysing Overall GHG Performance

Generating Heat from UK Miscanthus through Different Resource Production & Bioenergy Conversion Pathways
Case Study: Understanding where GHG are Generated

Breakdown of GHG Emissions Attributed to Processes and Activities within the Bioenergy & Counterfactual Pathways

- Abandoned Arable Land Reverting to Natural Forest System
 - COUNTERFACTUAL PATHWAY

- Case Study Miscanthus Bioenergy Scenarios
 - BIOENERGY PATHWAY
Bioenergy Emissions vs. Emissions Accounting Frameworks
National GHG Inventories

- IPCC developed the methodologies & guidelines universally used for accounting GHG emissions.
- Nations individually account emissions within a series of GHG Inventories.
 - Energy Generation
 - Industrial Processes & Product Use
 - Land-Use, Land-Use Change & Forestry
 - Wastes
- Emissions allocated to inventories based on geography & sector.
- Nations periodically assess and report the emissions from their activities.
Bioenergy vs. National GHG Reporting

UK Bioenergy Generated from Canadian Biomass Pellets

- Forest System
- Biomass Harvest
- Transport
- Pellet Production
- Transport
- Transport Oversees
- Transport
- Bioenergy Conversion
- Waste Management

Emissions Released to the Atmosphere
Emissions Locked Up from the Atmosphere
Does this System Work for Bioenergy?

It does what its supposed to do...

- Mechanism for benching & tracking progress towards emission targets.
- Framework for accounting the overall balance of GHG emissions (assuming sustainability & accurate reporting).
- Framework where policy makers can see how bioenergy reduces GHG inventories.
- Not designed to be tool for analysing the GHG performance of different bioenergy pathways.

It could be improved for bioenergy...

- Can be complicated and hard to see the overall picture.
- Macro-level inventory data.
- No incentive for increased sustainability or efficiency of biomass consumption.
- Annex 1 reporting, non-Annex 1 differences in reporting.
- Big sustainability assumption that bioenergy results in a balance of zero CO\textsubscript{2} emissions.
- LULUCF reporting focuses on afforestation, deforestation & reforestation – changing carbon stocks not explicitly accounted.
Whole Systems Research – Key Messages

- We know what makes a bioenergy pathways good and bad in terms of GHGs
 - we need to shout about the good more!
- Is it time to start picking more bioenergy GHG winners?
- We know what generates bioenergy GHG uncertainties.
 - these need to be addressed through policy and in many cases through development and implementation of best practice.
- Bioenergy is only viable if it provides low carbon energy.
 Understanding how and where bioenergy whole systems emissions are accounted within the National Accounting Frameworks is not always easy.
 - Should we not be focusing on this more?
Contact Details

Dr. Andrew Welfle
Tyndall Centre for Climate Change Research
The University of Manchester

📧 andrew.welfle@manchester.ac.uk
📞 +44 (0)161 275 4339
🐦 @andrew_welfle
LinkedIn Andrew Welfle