Sustainability of bioenergy – Mapping the risks & benefits to inform future bioenergy systems

  • Sustainability will be fundamental for bioenergy to be deployed at scale.
  • Bioeconomy Sustainability Indicator Model applied to map 16 bioenergy case studies.
  • Bioenergy sustainability is a balance of trade-offs & an unlikely end destination.
  • Risk & benefit trends across resources & technologies should inform policy.
  • With uncertainties in bioenergy sustainability reducing, policy focus should evolve.

View external link

Abstract

Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions – there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding ‘credit’ across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability.

Access the paper

Join our newsletter

I agree to the Terms and Conditions(Required)
Keep me up to date with the latest from Supergen Bioenergy Hub(Required)
This field is for validation purposes and should be left unchanged.